
Ikiwiki isn’t your typical wiki, but a
program that turns documents
into HTML (Figure 1). It

doesn’t need a web server,
CGI scripts, revision history,
or anything else to reformat
documents, so it doesn’t de-
pend on any of them. Instead, sepa-
rate plugins provide each of these fea-
tures and more.

If you decide to keep track of
page revisions, as most wikis
do, you won’t store
those revisions in a
database. Instead,
Ikiwiki stores revi-
sions in revision con-
trol systems such as
Subversion, Git, or Mercurial. This lets
you edit your wiki with the use of any
text editor, command-line program, or
application. You can even edit your
wiki offline. Of course, you can’t
publish your changes until
you’re back online.

Many people use Iki-
wiki to blog, and it
provides all of the
usual tools for
blogging: RSS and
Atom news feeds,
comments, and tags.
Ikiwiki also provides a novel
feature not seen in most blog software:
It lets readers inspect the revision his-
tory of a blog post.

Although you can easily cre-
ate, edit, and browse
your wiki locally
without a web

server, you need one to put
your wiki on the web. The fol-

lowing instructions don’t require a
web server, but for those of you who
have one, I’ll also describe how to con-
figure Ikiwiki for the web.

Installing and Configuring
To install the ikiwiki package, use your
favorite package manager. If you don’t
have one, try Synaptic in the System |
Administration menu. Don’t quit your
package manager just yet – you still
need to install a revision control system.
On Jaunty (but not other versions of
Ubuntu), you also need to fix bug
#375159 [1] before continuing by run-
ning the following command:

sudo sed ‑i U

 '28 s^/usr/local^/usr^' U

 /usr/share/perl5/IkiWiki.pm

Ikiwiki tracks changes with a revision
control system. Here, I pair Ikiwiki with
the Git revision control system, but you
can use other systems instead. Now use
your favorite package manager to install

the git-core package. If you plan
to let users view page

history from the
web server on this
computer, also in-
stall the gitweb
package. After in-
stalling Git, open

a terminal emula-
tor and run the fol-

lowing command:

ikiwiki ‑‑setup U

 /etc/ikiwiki/auto.setup

Get your own wiki up and running with Ikiwiki.

By DaviD a. HarDing

Turn your text documents into HTML with Ikiwiki

the Changer

desktopikiwiki

49iSSUE 02

ikiwikidesktop

50 iSSUE 02 UbUntU User

Ikiwiki asks you to name your wiki,
name your account, and enter a pass-
word for your account. Additionally, it
asks for the name of the revision control
system you want to use – answer git. As
Ikiwiki sets up your wiki, it lists the in-
formation you’ll need later, which I sug-
gest you save.

In the list, locate the three settings la-
beled repository, srcdir, and destdir.
These point to your wiki’s Git repository,
source directory, and destination direc-
tory. The repository stores your wiki’s
revision history. If you want gitweb to
display this history for everyone to see,
run the following commands to move
the repository and tell the source direc-
tory about its new location.

sudo mv wiki.git /var/cache/git/

cd wiki

git config remote.origin.url U

 /var/cache/git/wiki.git

The destination directory stores your wi-
ki’s HTML files. Ikiwiki creates it in the
public_html subdirectory of your home
directory, which some web servers auto-
matically host; see the list Ikiwiki
printed for the location of your wiki on
the web.

While you try Ikiwiki, you can leave
your destination directory alone. Later,
you might want to manage pages outside
of your public_html directory. If so,
move your destination directory to wher-
ever you keep your website files – for ex-
ample, /var/www or /srv/www.

If you move any of these three directo-
ries, you need to update your Ikiwiki
setup file. Ikiwiki listed the name of this
file earlier with the rest of your settings;
its name ends in .setup. Now open the
file and update the srcdir, destdir, and
git_wrapper settings. Also, you might
need to change the url, cgiurl, and cgi_
wrapper settings to reflect the new loca-
tion of Ikiwiki on your website. Be sure
to re-run the Ikiwiki setup command

ikiwiki ‑‑setup wiki.setup

whenever you change an Ikiwiki setting.

editing Your Wiki
Unlike other wikis, you can create, edit,
or delete Ikiwiki pages from anywhere,
and you don’t even need a web server.
Activating this feature requires only a lit-

tle extra setup. To
start, make a copy
(clone) of your
repository:

git clone U

wiki.git mywiki

The git command
creates the direc-
tory mywiki and
fills it with all the
files in your wiki.
Although you can
begin editing files in this directory im-
mediately, you don’t have any yet, so I
suggest you start by putting something
in the file mywiki/index.mdwn. Later,
Ikiwiki will turn this file into the index.
html file that everyone sees when they
first visit your wiki. Although you can
open index.mdwn in any text editor – vi,
Emacs, Gedit, Kate, or even OpenOffice.
org – you must save it as text with a
.mdwn file extension. For help format-
ting this file, see the formatting section
below. Now go to your terminal emula-
tor, change directory (cd) into the my‑
wiki directory, and run:

git add index.mdwn

git commit index.mdwn

git push

The first command adds index.mdwn to
Git’s revision log. The second command
asks you to describe the changes you
made; you could enter, for example,
“created new index file.” The third com-
mand sends both index.mdwn and the
log to the Git repository. The Git reposi-
tory saves index.mdwn and the incom-
ing updated revision log. Then it runs a
script that Ikiwiki installed: the post-
commit hook, which copies index.
mdwn, converts the copy from Mark-
down to HTML, and places the HTML in
the destination directory. If anything
goes wrong, Git prints an error on your
screen.

Repeat the second and third com-
mands every time you edit a file; repeat
all three commands every time you add
a new file.

To view your new wiki page, browse
to the location of Ikiwiki on your web
server or to the destination directory. For
example, substitute your username and
wiki name in http:// example. com/

 ~<username>/ <wiki_name>/ or
file:/// home/ <username>/ public_html/
 <wiki_name>/ index. html. To create
additional copies of your wiki, use the
git clone command as many times as you
want. Git has special options for the
clone command that let you create
remote offline repositories.

If you’re interested, read the manual
page with the man git‑clone command.
If you make more than one copy or let
people edit pages over the web, you
should run the git pull command twice
in the mywiki directory: once before you
start editing a page and once before you
commit it.

Formatting Wiki pages
Many wikis use their own frustratingly
peculiar syntax. For different wikis, it
seems, you must learn a whole new
markup language. Ikiwiki partially
solves this problem by letting you
choose the markup language you want
to use. Ikiwiki uses the Markdown for-
mat by default, but you can also use Re-
Structured Text (RST), plain HTML, and

01 ## Two hashes: an h2 heading

02

03 An empty line ends paragraphs.

04

05 Greater than symbol: blockquote.

06

07 Four spaces: <code><pre>

08

09 ̀inline code` uses backtics

10

11 *italics* and _also italics_

12

13 **bold** and __also bold__

14

15 [A link!](http://example.com)

Markdown Syntax Summary

Figure 1: Ikiwiki running its own homepage.

a Wikipedia-like syntax. New markup
languages come as plugins, so you can
add more by enabling plugins. Ikiwiki
looks at file extensions to figure out
which markup language each article
uses. For example, the extensions .
mdwn, .rst, and .html mean, respec-
tively, the Markdown, restructured text,
and HTML formats.

Markdown lets you format pages as
typical text-only email messages. For a
summary, see the “Markdown Syntax
Summary” box (Figure 2), or get a full
description of the language from the
Markdown homepage [2].

special directive
With the use of special commands called
directives, you can add special features
to specific pages. Each directive comes
from a single plugin, but plugins can
work together to give a directive new
features. For example, the tag plugin lets
you add tags to a page with the tag di-
rective. All directives share a common
format:

[[!tag article linux ubuntu]]

[[!pagecount]]

[[!inline pages="blog/*"]]

My favorite directive, inline, displays
other pages in the wiki on the current
page and combines with other plugins to
build RSS and Atom news feeds of the
included pages.

For example, I use the inline example
in the code above to render my own
blog. You can easily turn any set of
pages into a blog or news page, or you
can do something novel. For example,
Ikiwiki uses the inline directive to track
open and closed bug reports.

plugins
Ikiwiki includes two sets of plugins and
numerous ungrouped plugins. The first

set enables the features most people ex-
pect from even the most basic of wikis
by default, such as Markdown format-
ting and a CGI script that lets users edit
pages on the web. Ikiwiki’s author
named the second set of plugins “good-
stuff” and describes them as, “not too
intrusive, work well with little configura-
tion, and nice to have on any capable
wiki.” Ikiwiki disables these plugins by
default, but a single change to your Iki-
wiki setup file enables them. Ikiwiki also
includes dozens of other plugins. For the
complete list of over 100 included and
third-party plugins, take a look at Ikiwi-
ki’s plugin page [3].

To enable plugins that came with Iki-
wiki, add their names to the add_plugins
variable in Ikiwiki’s setup file. To disable
plugins that Ikiwiki enabled, add their
names to the disable_plugins variable.
For example, to enable the search plugin
and the whole goodstuff plugin package
but disable password logins, use:

To add plugins, list them here

add_plugins

 => [qw{search goodstuff}],

To disable plugins, list them

disable_plugins

 => [qw{passwordauth}],

Now use the links on the Ikiwiki plugin
page to download the third-party plug-
ins you want. Just place the files in the
~/.ikiwiki/ directory and add their
names to the add_plugins variable as
described above. Get the name of a
plugin for the add_plugins variable by
subtracting the .pm file extension from
its file name.

Some plugins require configuration
and some plugins support extra options.
In both cases, you will set variables in
the Ikiwiki setup file. For details about
configuring specific plugins, read the pl-
ugins page [3] on Ikiwiki’s website –
every plugin has a page. Ikiwiki’s setup
file describes most of the plugin vari-
ables that come with Ikiwiki.

Change Wiki's Appearance
Ikiwiki has a very plain default theme –
you might even call it barren. Ikiwiki’s
author might prefer it this way, but he
also made the layout easy to modify. Al-
most all of Ikiwiki’s HTML elements
have an ID or class, so you can lay out

your wiki with CSS. Instead of modify-
ing the main Ikiwiki CSS file, Ikiwiki
suggests you put your layout into the
local.css file. First create this file in the
mywiki directory, add some CSS, save
the file, then run the following three
commands:

git add local.css

git commit local.css

git push

Ikiwiki automatically points to this file
on every page of the wiki.

Unfortunately, you can only do so
much with CSS. For example, you can’t
use it to add a new element to a page.
However, you can edit Ikiwiki’s template
files in the /usr/share/ikiwiki/templates
directory.

Ikiwiki combines these templates with
your wiki pages and renders the result
with the HTML Template Perl Program-
ing Language module. Although you can
edit the templates directly, I suggest you
copy the directory with cp ‑a and make
the templatedir variable point to your
copy. If you need help editing the tem-
plates, start by reading the module’s
comprehensive manual page with man
'HTML::Template'.

Conclusion
In this article, we've set up the bare
bones on an Ikiwiki. It works and there
is nothing else that you need to do to it.
With more than 100 plugins, I couldn’t
describe everything Ikiwiki can do with-
out writing a book, so I leave it to you to
explore this uniquely flexible wiki. I rec-
ommend beginning with a look at the
Ikiwiki homepage [4].

Not only does it run Ikiwiki, but you
can see many of the optional plugins at
work. Also, you’ll find comments and
suggestions from people that use Ikiwiki
in all sorts of innovative ways. n

desktopikiwiki

51iSSUE 02UbUntU User

Figure 2: The Markdown syntax summary

converted into HTML by Ikiwiki.

[1] Ubuntu bug #375159: https:// bugs.
 launchpad. net/ ubuntu/ +source/
 ikiwiki/ +bug/ 375159

[2] Markdown homepage and syntax
reference: http:// daringfireball. net/
 projects/ markdown/

[3] Ikiwiki plugins page: http:// ikiwiki.
 info/ plugins/

[4] Ikiwiki homepage: http:// ikiwiki. info/

INFO

