
fter just loading your copy of the
shiny new Linux release Ubuntu
9.04, things are going well. Now

that you’ve read the other articles in this
issue, you’re starting to think you’ve
found a pretty good home. But even
when you love your home, once in a
while you want a holiday – which means
loading up another Linux distribution to
play with.

Of course, it might not be all play.
Sometimes you need to test another op-
erating system, or you might need to run

Windows as well as Ubuntu. Wouldn’t it
be nice if you could run all those things
on your current computer, without hav-
ing to reboot or reinstall? You can – with
virtualization.

Virtualization software creates a vir-
tual computer on your computer, on
which you can install any other operat-
ing system, whether it be Ubuntu, Red-
Hat, Mandriva, or yes, even Windows.
From the perspective of the guest operat-
ing system, the virtual machine is a real
machine with real hard drives, a real

network card, real video hardware, and
so on. When you boot that virtual ma-
chine, it will appear as though you are
booting a real machine.

Your Ubuntu system doesn’t have any of
this software installed by default, but
getting it is easy. Furthermore, several
virtualization packages are available.
These include the command-line pro-
grams QEMU [1] and KVM [2], as well
as one my favorites, the powerful graphi-
cal VirtualBox [3]. To install these pro-
grams, select them via Synaptic or the
apt-get command:

apt-get install qemu kvm

virtualbox-ose

Why tie yourself to the hardware? We’ll show you how to operate

virtual environments from your Ubuntu desktop.

BY MARCEL GAGNÉ

Virtualization in Ubuntu

11ISSUE 01UBUNTU USER

Of the three, I prefer VirtualBox, but
let me show you how easy it is to run a
virtual machine using QEMU or KVM.
KVM, the Kernel Virtual Machine, is a
replacement for QEMU. It works by tak-
ing advantage of processor-based hard-
ware virtualization technology. On the
Intel platform, this is known as VT; on
AMD processors, it is called Pacifica.
What it means to you is that you can
take advantage of KVM to run your vir-
tual machines with substantially better
performance than you can with straight
software virtualization. The catch, as
you might expect, is that not every ma-
chine out there supports hardware virtu-
alization. To find out
whether your system is a
candidate, execute this lit-
tle snippet of code from a
terminal window or shell:

grep -E

 '^flags.*(vmx|svm)'

/proc/cpuinfo

If it returns the string vmx
or svm, your processor is
ready. If not, you have to
stick with the software-
based virtualization of
QEMU. The KVM com-
mands are pretty much
interchangeable with
those of QEMU, as are the
install and operating sys-
tem images. In fact, KVM
is based on QEMU.

Next, I’ll take a look at
how QEMU works. For

this first dem-
onstration, I’ll
install a tiny
distribution
called Damn
Small Linux
(DSL) from an
ISO image
downloaded
from the project
website [4]. Be-
cause DSL is a
cute little distro
with minimal
space require-
ments, I’m
going to create
a relatively
small disk

image (a virtual hard disk) for it to live
on with the qemu-img command:

qemu-img create dsl.img 256M

The system returns with the following
reply:

Formatting 'dsl.img',

fmt=raw, size=262144 kB

The preceding command creates a raw-
formatted disk image by default. A few
different image formats are available,
most notably qcow2, which is a portable
image format that is useful if you want

to install a non-Linux OS – like Windows
XP, for example.

The next step is to install Linux into
this disk image, which I do with the
qemu command:

qemu -cdrom dsl.iso

-hda dsl.img -m 256 -boot d

Several interesting things are happening
here. For starters, the -cdrom parameter
is the path to the CD-ROM image from
which you are installing your distribu-
tion. If you were using a physical CD-
ROM, that path would likely be some-
thing like /dev/cdrom. The next parame-
ter, -hda, defines the path to the disk
image I just created; then, it’s followed
by the -m switch, which, in this case, al-
locates 256MB of RAM to the running
session. Finally, -boot identifies the boot
drive (the CD image), which is the so-
called D drive. As soon as I press Enter,
the virtual hardware boots (Figure 1).

The disk you created and the CD-ROM
are represented as physical devices at
boot time, as is the default video card
and the BIOS. In fact, you can even in-
terrupt the boot process and bring up a
device boot menu. If you press Enter at
this point, the system will go through its
normal boot process, which, in the case
of a Live CD, usually stops to let you de-
cide what to do as far as booting or in-
stalling. DSL is built on Knoppix, so

Virtualization in Ubuntu

12 ISSUE 01 UBUNTU USER

users of the venerable Live CD will find
some of this familiar. For everyone else,
just press Enter.

Everything that happens from this step
forward should happen as it would if
you were running any other Linux distri-
bution from a Live CD. The guest oper-
ating system will boot, or install, nor-
mally. Depending on the speed of your
machine and the amount of memory you
have at your disposal, the process could
be peppy or quite slow. Remember that
this virtual machine uses whatever por-
tion of your host system’s resources you
alloted. That means less for your host
system, both in terms of memory and
processor resources. Also, if your proces-
sor allows KVM instead of QEMU, the
performance will be substantially higher.

A few seconds (or minutes) later, your
virtual machine is up and running (Fig-
ure 2).

Before, I suggested that running QEMU
instead of KVM means you aren’t privy
to processor-level acceleration, which
means you are emulating everything in
memory without the benefit of kernel ac-
celeration. When you are running a little
tiny distribution like DSL, that’s fine, but
if you want to try a different Ubuntu,
openSUSE, Fedora, or even Windows,
you will feel the pain pretty quickly. In
this case, the KQEMU hardware accelera-

tion module comes into play. The catch
is that it’s not installed by default, and
you can only install the source for it.
Yes, that means you have to build it.
Luckily, that’s not complicated:

sudo apt-get install

module-assistant

sudo module-asssitant

prepare

sudo module-assistant -f

get kqemu-source

The result is a kernel module that dra-
matically speeds up your QEMU ses-
sions, giving you performance on par
with KVM. Now, even with QEMU, you
can run and install more demanding op-
erating systems, like Ubuntu. For the
pure fun of it, I loaded up Ubuntu Jaunty
Jackalope (with the Gnome desktop)
and ran a full implementation of it on
my Kubuntu desktop (Figure 3).

Before I move on, I’ll share a few other
parameter with you. For starters, you
might add -no-acpi to disable this in the
virtual machine. Also, you can use the
-localtime parameter to tell QEMU to run
your session with the local machine time
as opposed to the default UTC. Remem-
ber the kernel acceleration? Try -ker-
nel-kqemu. In addition are network pa-
rameters, USB parameters, file-sharing
parameters (SMB), devices parameters,
and more. Because you are only seeing

the basics, make sure you check out the
man page for the qemu command. Also

remember that my set-
tings for this example
imply a distro with a very
small footprint.

Another great piece of
virtualization software is
VirtualBox, an open
source package freely dis-
tributed under the GPL
and distributed by Sun
Microsystems (who, as I
write this, has been pur-
chased by Oracle Corpo-
ration). VirtualBox is a
program I use every day
and one I recommend
highly. With VirtualBox, I
can load an operating sys-
tem that you might still
want access to: Windows
XP. Of course, you do
need a licensed copy of

Virtualization in Ubuntu

13ISSUE 01UBUNTU USER

Microsoft Windows
to proceed.

When you start
VirtualBox for the
first time – assuming
you already have
Virtualbox installed
via either Synaptic
or apt-get – no ma-
chines will be run-
ning in it. Think of it
as a blank slate or,
better yet, a new
computer with a
blank hard drive
waiting for your fa-
vorite distribution,
or, in this case, Win-
dows XP.

Before you can install Windows, you
need to create your virtual hardware. To
do this, click New on the VirtualBox
toolbar. A nice welcoming message ex-
plains that the wizard will guide you
through the various steps. When you
click Next, you will be asked to decide
what kind of virtual machine you plan to
create (Figure 4).

To start, give it a name. For example,
I’ve chosen to call mine the very unorigi-
nal WinXP, but you can call it whatever
you like. Next, select the operating sys-
tem (Microsoft Windows) from the drop-
down list, then identify the version
(Windows XP). The list of operating sys-
tems covers a lot of ground, including
Windows, Linux, Solaris, BSD, and even
IBM’s old OS/ 2, and each of these oper-
ating systems have many versions. The
Windows support goes right up to the
new, not-yet-released Windows 7. When
you click Next, you will be asked to se-
lect the amount of RAM you want to
dedicate to the VM.

Deciding how much memory to allocate
is a bit of a balancing act. On one hand,
most modern operating systems have
minimum requirements. On the other
hand, you have to take into consider-
ation how much memory your Ubuntu
host system has. Either enter the amount
into the text box or use the slider.

Next, your new machine needs a hard
drive on which to load XP, so you must
create a virtual hard disk (Figure 5). Be-
cause this is your first time out, the pri-
mary master (the main disk) will be

listed as <no media>. Clicking New
creates a disk image.

Clicking Next in the new welcome
message for the virtual disk wizard leads
you to the dialog from which you can
choose one of two disk image types: a
fixed-size storage medium or a dynami-
cally expanding disk image. The foot-
print of a dynamically expanding image
is minimal to start and expands as
needed. In comparison, the fixed image
takes up whatever space you give it right
from the beginning and runs up against
a wall when that space is used. Unless
you have good reason to do otherwise,
select Dynamically expanding storage
and click Next.

Having made your decision on storage
options, you can now define the size and

location. The location, by de-
fault, is your machine name (my
WinXP in Figure 4). In effect,
this is a folder on your disk in
which the machine resides.
Next, you allocate the space ei-
ther by typing it into the text
window or with the slider. A size
for this disk will be suggested
according to the operating sys-
tem you are loading. On the
basis of your expected needs, ac-
cept the default or choose a size.
After you click Next, you can re-
view your selections. If you are
happy with the choices you’ve
made, click Finish.

Now you are back to the vir-
tual hard disk selection screen

you saw in Figure 5, but this time, your
new disk image is selected for you. All
you have to do is click Next to continue.
This opportunity is the last you’ll have
to review everything you’ve done to
date. VirtualBox will remind you of your
chosen machine name, the memory allo-
cated, the OS type, and the type and size
of disk you’ve chosen. When you click
Finish, your virtual machine is ready. In
the main VirtualBox window (Figure 6),
your new WinXP machine appears in the
list of machines (on the left), ready to be
loaded.

Remember, this is a clean computer,
with nothing installed. To the right of the
machine list are the parameters associ-
ated with the selected machine. Each of
the blue labels can be clicked to config-

Virtualization in Ubuntu

14 ISSUE 01 UBUNTU USER

ure the resource listed. Notice that you
can even go back and change the virtual
machine specifications, such as memory.
Other labels let you define what physical
resources (on your host machine) the
virtual machine has access to. For in-
stance, to give your virtual machine ac-
cess to the physical DVD-ROM drive in
which the Windows XP install media is
located, click on the CD/ DVD-ROM label.

In the resulting dialog box, check the
Mount CD/ DVD Drive box. If you have
more than one drive, select the one you
want from the drop-down list. The radio
button labeled ISO Image File is particu-
larly interesting if you are loading an-
other Linux distribution because you can
install it directly from the hard drive,
skipping the need for a physical disc (as
is the case with Windows because free
Live DVDs don’t exist). When you click
OK, you’ll find yourself back at the main
VirtualBox window with the CD/ DVD-
ROM label now indicating the host com-
puter’s physical drive. Now you are
ready to install Windows XP.

First, make sure the virtual machine is
selected, then click the Start button. Vir-
tualBox will let you know that the auto-
capture keyboard feature has been acti-
vated. This includes your mouse as well.
What this means is that the virtual ma-
chine has full access to your mouse and
keyboard. To “uncapture” your mouse
and keyboard, press the right Ctrl key on
your keyboard. To acknowledge the mes-
sage, click OK, and your new computer

will boot from the Windows install disc.
What follows is a standard Windows XP
installation (Figure 7): You accept the li-
cense agreement, your virtual disk is for-
matted, and Windows does its thing.

Somewhere in the process, you’ll need
to enter your license code, answer some
questions, and so on. Eventually, the in-
stallation will complete and your new
Windows machine will be up and run-
ning. After you attend to standard Win-
dows stuff, such as adjusting screen size
and making other modifications to your
running machine, you’ll have a full Win-
dows XP implementation running on top
of your Ubuntu (or Kubuntu) desktop,
with access to everything you normally
use under Windows (Figure 8). Instead
of emulating Windows, you are running
a real, albeit virtual, PC loaded with
Windows XP.

Although this might sound like a
happy ending, in which the two seem-
ingly irreconcilable operating systems
are working together on the same hard-
ware, VirtualBox has Guest Additions
that can improve the relationship. Once
you’ve had to hit the control key a few
times to recapture your keyboard and
mouse or you find that the default
screen sizes provided by Windows just
don’t work well on your widescreen
notebook, you’ll be happy to learn that
even these issues can be resolved. To in-
stall the Guest Additions, release your
keyboard and mouse (right Ctrl key),
then click the Devices menu on the vir-
tual machine and select Install Guest Ad-
ditions from the menu (Figure 9).

After you’ve followed the instructions
for installing the guest additions and re-
started your machine, your experience
will be vastly different. Just by clicking
on a window inside Windows, you can
change the focus from your Ubuntu ap-
plications to your Windows desktop.
Your mouse will be able to sail across
your desktop from Windows to Ubuntu
and back again. Furthermore, you will
be able to resize Windows to fit what-
ever geometry makes sense to you and
your Ubuntu desktop. Finally, you will
be happy to know that these guest addi-
tions are not specifically a Windows
thing and are available for other operat-
ing systems as well.

Happily ever after is where this story
ends. By running Ubuntu, you have a
superior operating system that is faster,
more reliable, and more secure than
Windows. But you can have your
Ubuntu and your Windows too. Best of
all, you aren’t limited to just Windows.
For example, you can try other Linux
distributions, and even BSD or Solaris,
from the comfort of your existing
Ubuntu installation without reinstalling.

Yes, you can have it all – with a little
virtualization. ■

[1] QEMU:
http:// www. nongnu. org/ qemu/

[2] KVM: http:// www. linux-kvm. org/
 page/ Main_Page

[3] VirtualBox:
http:// www. virtualbox. org/

[4] DSL: http:// damnsmalllinux. org/

INFO

Virtualization in Ubuntu

15ISSUE 01UBUNTU USER

