
ne of the fundamental tenets of

Linux (and its progenitor, Unix)

is “Make each program do one

thing well.” This notion encourages sim-

plicity and efficiency and is embodied in

the raft of small, specialized utilities that

can be found on a Linux system. For ex-

ample, the sole function of ls is to list

files and directories, while df lists only

mounted volumes. Each utility has its

own purpose, and there is little or no

overlap among the system’s large collec-

tion of available tools. (Of course, you

often have a choice of many tools with

the same purpose. For example, you can

use vi, kate, or pico, among others, to

edit text files.)

Another principle tenet is “Everything

is a file.” An application is a file; a direc-

tory is a file that catalogs other files;

each device, too, is a file.

The commonality? Every file, no mat-

ter its semantics, can be opened, read,

written to, and closed. Thus, in Linux,

input can come from a terminal or an In-

ternet connection, and output can be

sent to a printer or to another running

application.

Taken together, these two axioms

allow two or more small applications to

be combined ad hoc into a greater

whole. The pipe (|) operator in the shell

is the most visible implementation. It

chains commands, making the output of

one command the input of a subsequent

command. For example, the find com-

mand can search a directory hierarchy

for files that match certain criteria. The

command:

$ find ~ -name '*homework.txt' -print

prints the names of all files in your home

directory that begin with any string (the

* is a wildcard for no or any number of

characters) and end with “homework.

txt”. Thus, homework.txt would match,

as would math-homework.txt. Sepa-

rately. the egrep command searches the

file content for a pattern. The command:

$ egrep -e '(math|science)' stuff

would search the file stuff for occur-

rences of the pattern “math” or the pat-

tern “science”.

If you combine the two previous com-

mands with a pipe so that the output of

find becomes the input of egrep, like so:

$ find ~ -name '*homework.txt'

-print | egrep -e '(math|science)'

you can find all homework assignments

with “math” or “science” in the file’s

name. Assuming you had the files home-

Shell scripts combine the power of the

command line with a small program-

ming language. Scripts also automate

repetitive tasks and serve as a great

introduction to software development

on Linux. BY MARTIN STREICHER

Intro to Shell Scripting

30 ISSUE 02 UBUNTU USER

01 #! /bin/bash

02

03 # Locate my math and science

homework

04 find ~ -name '*homework.txt' -print

| egrep -e '(math|science)'

Listing 1: Bash shell script
to find specific files

01 #! /bin/bash

02

03 # Locate my math and science

homework

04 find ~ -type f -name '*.txt' -print

| egrep -e $1

Listing 2: A shell script that
accepts one argument

work.txt, math-homework.txt, science-

homework.txt, and chem-homework.txt,

your new command would produce two

results:

$ find ~ -name '*homework.txt'

-print | egrep -e '(math|science)'

./math-homework.txt

./science-homework.txt

This demonstration is just a simple ex-

ample, but it shows how easy it is to in-

stantly create a new tool with just a few

keystrokes. Given the more than 1,000

utilities on a typical Linux system, the

possibilities are endless.

In fact, many command combinations

are perennially useful. You can capture a

short command in an alias, a kind of

shorthand, and save it for use, session

after session. If you add the line:

alias fw="find ~ -name

'*homework.txt' -print |

egrep -e '(math|science)'"

to your shell startup file, ~/.bashrc, and

type source ~/.bashrc or start a new

shell, you can run the entire command

with the abbreviation fw.

$ fw

/home/strike/class/math-homework.txt

/home/strike/class/science-homework.txt

You can also capture a command combi-

nation in a shell script. A shell script,

which can be one or any number of

lines, is an application composed of shell

commands.

You can execute a script just as you

would any system utility. It can leverage

all the common shell operators – glob-

bing, pipes, subshells, etc. – and other

programming language features not typi-

cally used on the command line. Shell

scripts are also portable. Because a script

is nothing more than a text file, sharing

it with others and propagating it to other

systems is a snap. Expert users, system

administrators, and developers accumu-

late shell scripts to accomplish a wide

variety of tasks, and so can you.

Let’s look at shell scripting with the

Bash shell, the most common Linux

shell available. Almost every shell is

scriptable, although syntax and features

vary. Listing 1 shows a short shell script

that captures the find/egrep combination

shown previously.

To use the script, launch your favorite

text editor and create a file named find-

work.sh in your home directory with the

lines shown in Listing 1. Do not put any

leading spaces on the first line. Save,

quit the editor, and run the following

command:

$ chmod +x findwork.sh

chmod +x makes the file executable, so

you can launch it just like any other

command-line utility.

$./findwork.sh

/home/strike/class/math-homework.txt

/home/strike/class/science-homework.txt

The first line of the script is special

and is required for all executable scripts.

The first two characters, #! (referred to

as “pound-bang”) identify the file as an

executable script. The rest of the line, /

bin/bash, specifies what to run to inter-

pret the script. Here, the script is a Bash

shell script, hence /bin/bash. (If you

were writing a script in the Perl lan-

guage, the first line of that file would be

#! /usr/bin/perl.)

The second and subsequent lines of

the file are the actual code. Blank lines

are ignored, as is any line that begins

with a #, which is treated as a comment.

On line 4, as it does at the command

line, Bash interprets and runs the com-

mand. Since the output of egrep is not

piped to a later command, the output

goes to standard output, your screen.

Typing ./findwork.sh is terse and so

much faster than retyping the entire

command line, but it’s inflexible.

 If you need to search for math, sci-

ence, and chemistry homework (egrep -e

'(math|science|chem)'), you can either

edit the script and make a temporary

change, re-type the command on the

command line, or. preferably, change the

script to take an “argument”. When you

type a command such as ls -l thisfile

thatfile, the phrases after the command

Intro to Shell Scripting

31ISSUE 02UBUNTU USER

01 #! /bin/bash

02

03 if [-z $1]; then

04 echo "filetyper: No file

specified"

05 exit 1

06 fi

07

08 for filename in "$@"; do

09 echo -n "$filename is a"

10

11 case $filename in

12 *.sh)

13 if [-x $filename

]; then

14 echo -n "n

executable"

15 fi

16 echo -n "

script";;

17

18 *.txt) echo -n "

text";;

19

20 *.png | *.jpg) echo -n "

image";;

21

22 *) echo -n "n

unknown";;

23 esac

24

25 echo " file"

26 done

27

28 exit 0

Listing 3: Analyze file types
based on file extension

01 $ ls -F

02 filetyper.sh lab_results/

parrot.png

03 findany.sh*

math-12-homework.txt

science-homework.txt

04 findwork.sh*

math-homework.txt

05 homework.txt monkey.jpg

06

07 $./filetyper.sh *

08 filetyper.sh is a script file

09 findany.sh is an executable script

file

10 findwork.sh is an executable script

file

11 homework.txt is a text file

12 lab_results is an unknown file

13 math-12-homework.txt is a text file

14 math-homework.txt is a text file

15 monkey.jpg is a image file

16 parrot.png is a image file

17 science-homework.txt is a text file

Listing 4:
Output of Listing 3

name are the arguments. Some argu-

ments are interpreted as options or

switches to affect the behavior of the

command, such as -l, which enables a

long format output. Any arguments that

remain are acted upon. (Think of the

command name as the verb and the ar-

guments as the subjects.) Your shell

scripts can accept arguments, too.

Listing 2 is a variant of Listing 1 that

accepts a string as the filename pattern.

The find command is slightly different in

that it looks only for plain files (-type f)

whose names end with “.txt”. The spe-

cial variable $1 is replaced with the first

argument from the command line, $2

with the second, and so on. (Keep in

mind that the command name does not

count as an argument.)

Save this new script into findany.sh,

make it executable with chmod as be-

fore, and invoke it with a pattern. As-

suming you also had a file named chem-

homework.txt, the command ./findany.

sh '(math|chem|science)' would yield

three results:

$./findany.sh '(math|chem|science)'

/home/strike/class/math-homework.txt

/home/strike/class/science-homework.txt

/home/strike/class/chem-homework.txt

The pattern appears in single quotes

because the characters (,), and | are

shell operators. The single quotes, which

are also shell operators, disable interpre-

tation, making the phrase one long

string. Omitting the single quotes yields

bash: syntax error near unexpected token

`math'. “One-liners,” like the scripts

above, can save vast amounts of time.

You might be surprised at how many

great one-liners exist – indeed, writing

them is something of an art form. How-

ever, to realize any significant automa-

tion, a shell script must be able to query

its environment, make decisions, main-

tain state, and even interact with the

user. In other words, the shell script must

be a program.

Like C, Ruby, or SQL, Bash provides a

fairly rich programming language of its

own. You can set and test variables; you

can branch, loop, and call subroutines;

and you can mix in shell operators and

Linux utilities. A full treatise on Bash

isn’t possible here. For an in-depth look

at Bash scripting, consult the book

Learning the Bash Shell [1].

The shell script in Listing 3 shows a

number of control structures and coding

paradigms that appear frequently in

scripts. The script accepts a list of files

and deduces the type of each file based

on the file’s extension (the portion after

the dot). Let’s step through Listing 3:

if statement at lines 3-6 deter-

mines whether or not the first argu-

ment is empty; if it is empty, implying

no arguments, the script exits with a

helpful message. The -z is a special

primary operand used in conditions. It

asks, “Is the string empty?” There are

other primaries, too. Line 13 uses -x to

test whether the named file both exists

and is executable. -d somefile and -w

somefile (both not shown) test

whether a named file exists and is a

directory, or if the named file is write-

able, respectively.

exit in Line 5 terminates the script

immediately. The argument, 1, signals

that the script ended with an error,

which the command line and other

scripts can detect and recover from if

necessary. If at least one argument is

provided, the script proceeds and exits

with code 0, indicating success.

begins with do and ends with done.

This loop iterates over the collection of

command-line arguments (abbreviated

$@), setting the variable filename to

one argument at a time. You can ex-

pand, or extract, the value of filename

using the expression $filename. While

$1, $2, and so on, are useful in one-

liners, scripts that process many argu-

ments work more like this.

newline (the -n option). A double-

quoted string interpolates variables; a

single quoted string does not. Hence,

this line prints something like “chem-

homework.txt is a”. (If this were writ-

ten '$filename is a', the output would

be the literal “$filename is a”.)

switch statement. It’s es-

sentially a series of tests but is more

compact than writing many if state-

Intro to Shell Scripting

32 ISSUE 02 UBUNTU USER

01 ...

02 *) if [-d $filename

]; then

03 echo "

directory"

04 continue

05 else

06 echo -n "n

unknown"

07 fi;;

08

09 ...

Listing 5: Replacement
code for Listing 3

to deduce that a file name
is a directory

01 onestring=`ls -1`

02 manystrings=(`ls -1`)

03

04 echo $onestring

05 echo ${onestring[0]}

06 echo ${onestring[1]}

07

08 echo ${manystrings[0]}

09 echo ${manystrings[1]}

10 echo ${manystrings[2]}

Listing 6: Bash offers arrays

Be
s

Gu

R

01 TEMP=/tmp/usagenote.$$

02

03 users=(ethan joe sue)

04

05 for user in "${users[@]}"; do

06 usage=`du -h -c -d 1 /

Users/$user`

07 cat > $TEMP <<-END

08 Dear $user:

09

10 Here is your daily disk usage

report.

11

12 $usage

13

14 Please remove any unnecessary

files.

15

16 The Management

17 END

18

19 mail -s "Daily usage report"

$user < $TEMP

20 done

21

22 rm $TEMP

23

24 exit 0

Listing 7: You can embed
text using a “here”

document

ments. It tests the value of $filename

against one or more values. Here, the

values are shell glob patterns. If the

value of filename matches *.sh (any

filename that ends with “.sh”), the

statements associated with that value

execute. If the value matches another

pattern, that code runs. The double-

semicolons (;;) are not typos. Each is

part of the syntax of the switch state-

ment: each ends a block of statements.

ing newline, and the loop begins

anew if additional arguments remain.

Otherwise, the script will terminate

normally.

Save the script code in a file named file-

typer.sh, make it executable, and run the

new command with a list of file names.

Running this code on a set of miscella-

neous files might produce something

like the output shown in Listing 4.

The output looks correct, except the

directory lab_results is labeled an un-

known type. That’s easily remedied

using the primary -d, as shown in Listing

5. This replacement code does the trick.

One addition is continue; it ends the cur-

rent cycle of the loop and skips any re-

maining statements. You can also use

break to immediately terminate the

loop’s iterations and continue with the

rest of the script. Bash provides a for,

while, and until loop; continue and

break work identically in all three.

Because shell scripts are most often used

to automate what you might otherwise

do at the command line, there are many

techniques to capture information from

the system to help make decisions.

You can use the backtick (`) operator

to capture the output of a command in a

variable. For example, if a directory has

the files apple, banana, and coconut, the

following code:

files=`ls -1`

echo $files

would emit the long string “apple ba-

nana coconut”. You may not add

whitespace around the equal sign in an

assignment statement. If you do, it will

change the semantics of the statement

entirely. In some instances, compressing

the output into one string is appropriate.

However, if you wanted a true list of file

names, you can use a variation in the as-

signment statement. Listing 6 shows the

difference. Listing 6 produces this output:

files scripting.html src

files scripting.html src

files

scripting.html

src

onestring is a single element, so lines 4

and 5 produce the same result. Line 6

prints nothing because a second element

does not exist (Bash arrays are zero-

based, so the second element is at index

1). On the other hand, line 2 uses the as-

signment, (), operators to split a

whitespace-delimited list into an array of

Listing 3, you can iterate over an array

like so:

Intro to Shell Scripting

Be
st

Pr
ice

Gua
ra

nt
ee

!

Web Hosting
Email/Fax/SMS
Sales Invoicing
Networking

Accounting Software
Business Planning

Business Academy
Online Data Storage

Calendar
Contacts
Payment

Online Shop

Run A Business, Not An Office

Online. Easy. Secure. Reliable
All you need to run your home business or small office:

for string in "${manystrings[@]}"; do

echo $string

done

Another use of automated scripts is to

police system resources and alert users to

emerging or urgent problems. Usually, an

alert script contains a message. You can

embed the message in your script and ac-

tually interpolate variables at the same

time to customize the message to a par-

ticular user. Listing 7 shows an example.

In Listing 7, the lines between

<<-END and END form the embedded

text, or what’s called a “here” document

(as in “here it is”). The use of END as a

start and end marker is arbitrary; you

could use MONKEY or STOP, too. How-

ever, your start and end markers must

match, and you must put the end marker

at the start of a new line. If you change

the script to name yourself, you should

other curiosities found in Listing 7:

$$ is a special variable that contains

the process ID of the running shell.

Because a process ID is unique, you

can use it as a suffix to set aside a

unique temporary file. The purpose of

line 1 is to capture the unique name.

are interpolated within backticks (as

in line 6).

cat and the overwrite redi-

rection operator, >, to emit the inter-

polated here document to the tempo-

rary file. Because > recreates the file

each time, there is no need to purge

the file each time through the loop.

-

ment are expanded in place. The oper-

ator <<- removes all leading tabs but

not spaces from the lines of the here

document. If you changed <<- to

<<, the here document will be used

verbatim. If you do not want variables

interpolated, place single quotes

around the start market, as in 'END'.

-s option of mail supplies the sub-

ject line. The body of the message is

equivilant to the contents found in the

temporary file.

Another source of data for a script is you

or another user. Shell scripts can prompt

a user for feedback, collect an answer,

and continue.

To read data in Bash, use read. Its argu-

ments are variable names. Each line of

input is split by whitespace, and each

word is assigned to a variable in

sequence. If there are more words than

variables, the last variable gets all re-

maining words. If there are no variables,

the entire line of input is assigned to the

special variable REPLY.

Listing 10 shows you the results.If you

want to split a line into words, such as

to convert REPLY into an array, you can

use an assignment statement.

words=($REPLY) does the trick.

Bash and other shells offer many more

features than can be shown in one arti-

cle. If you’re curious to read more and

see lots of examples, just search the Web

for “bash script”.

Shell scripts are a great way to make

yourself more productive. If you type a

command or perform a task more than

two or three times, your command or

task is a good candidate for an alias, a

one-liner, or a larger script.

Shell scripts also provide a great intro-

duction to developing software on Linux.

Indeed, many developers are first ex-

posed to system programming right at

the command line. !

[1] Newham, Cameron and Bill Rosenb-

latt. Learning the Bash Shell, 3rd

Edition. O’Reilly Media, 2005.

INFO

Martin Streicher is a freelance devel-

oper and author. He holds an ad-

vanced degree in computer science

from Purdue University and has

worked on software from a Unix as-

sembler to the award-winning “You

Don’t Know Jack” CD-ROM game.

You can reach Martin at:

martin.streicher@gmail.com.

T
H

E
 A

U
T

H
O

R

Intro to Shell Scripting

34 ISSUE 02 UBUNTU USER

01 Dear ethan:

02

03 Here is your daily disk usage

report.

04

05 4.0K /Users/ethan/.cups

06 8.0K /Users/ethan/Desktop

07 23M /Users/ethan/Documents

08 488K /Users/ethan/Downloads

09 63M /Users/ethan/Library

10 1.8G /Users/ethan/Movies

11 120K /Users/ethan/Music

12 228M /Users/ethan/Pictures

13 0B /Users/ethan/Public

14 40K /Users/ethan/Sites

15 2.7G /Users/ethan

16 2.7G total

17

18 Please remove any unnecessary

files.

19

20 The Management

Listing 8: The output of
Listing 7 for one user

01 echo -n "Provide any list: " >&2

02 read

03 echo $REPLY

04

05 echo -n "Provide another list: "

>&2

06 read list

07 echo $list

08

09 echo -n "Provide a list of three

items: " >&2

10 read first second third

11 echo "first: $first, second:

$second, third: $third"

12

13 echo -n "Provide a list of at least

four items: " >&2

14 read first second third

15 echo "first: $first, second:

$second, third: $third"

Listing 9: Techniques to
collect user input

01 Provide any list: dog cat fish

02 dog cat fish

03

04 Provide another list: monkey

giraffe llama

05 monkey giraffe llama

06

07 Provide a list of three items: toad

lizard snake

08 first: toad, second: lizard, third:

snake

09

10 Provide a list of at least four

items: one two three four

11 first: one, second: two, third:

three four

Listing 10: Results of user
input

